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Same modelling
& verification approach 
concrete security: each lossy step 
documented by a game and a reduction 
(or an assumption) on paper

Standardized complications
- multiple algorithms and constructions

(crypto agility) 

- multiple keys

- conditional security
(crypto strength, compromise)

- wire format, fragmentation, padding

- stateful (stream encryption)

Poor TLS track record
- Many implementation flaws

- Attacks on weak cryptography
(MD5, SHA1, … ) 

- Attacks on weak constructions
(MAC-Encode-then-Encrypt)

- Attacks on compression

- Persistent side channels

- Persistent truncation attacks
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TLS 1.3 gets rid of weak 
constructions, encrypts 
parts of the handshake, 
introduces plenty of 
auxiliary keys

AppData
ct = 0x17

Handshake
ct = 0x16

Alert
ct = 0x15

…

plaintext

plaintext 000…ct

ciphertext
App

Data
TLS 1.0

cipherlen

(ℓ + 1)

format parse

ℓ + 1

encrypt decrypt5

tag



Record

LHSE

StAE

AEAD

PRF MAC
Verified

Crypto 

library

Generic AEAD 

construction

Stream Encryption with

sequence numbers

Length-Hiding (padded)

Multiplexed Streams

Sequence of streams

keyed by Handshake 

ChaCha20AES Poly1305GHASH

Handshake/Alert Application 

fragments: d0, d1, d2keys: 

k0, k1,…

Generic

We model record-layer 
security using a game at 
every level of the 
construction.

We make code-based 
security assumptions on 
the crypto primitives 
(PRF, MAC)

We obtain security 
guarantees at the top-
level API for the TLS 
record layer
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We program & verify AEAD
for TLS 1.2 and TLS 1.3.

We do not consider here 
classic, time-battered TLS 
modes such as AES_CBC
(Mac-Encode-then-Encrypt)  
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Ciphers (IND-PRF)

Assumed for AES and Chacha20

One-Time MACs (INT-CMA1)

For both GF128 or Poly1305, 
we get strong probabilistic security.



Ciphers (IND-PRF)

Modelling: 
we use a variant with specialized oracles 
for each usage of the resulting blocks

- as one-time MAC key materials

- as one-time pad for encryption

- as one-time pad for decryption

One-Time MACs (INT-CMA1)

Construction: 
authenticated materials and their
lengths are encoded as coefficients of a 
polynomial in a field (GF128 or 2^130 -5)

The MAC is the polynomial evaluated
at a random point, then masked.

We get strong probabilistic security.



Given

• a cipher, modelled as
a pseudo-random function

• a field for computing one-time MACs

• injective message encodings

We program and verify a generic
authenticated stream encryption 
with associated data.

We show

• safety

• functional correctness

• security (reduction to PRF assumption)

• concrete security bounds for the 
3 main record ciphersuites of TLS
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TLS-specific mechanisms

• fragmentation

• content multiplexing

• length-hiding, padding

• re-keying

• 0-RTT, 0.5-RTT

many kinds of proofs

not just code safety!

TLS FFI
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(on paper) in abstract

field + F* verification
Standard

crypto 

assumption

F* type-based verification on code

formalizing game-based reduction

Theorem: the 3 main record ciphersuites for TLS 
1.2 and 1.3 are secure, except with probabilities 

𝑞𝑒 is the number of encrypted records; 

𝑞𝑑 is the number of chosen-ciphertext decryptions; 

𝑞𝑏 is the total number of blocks for the PRF 
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We verified concrete security 
on low-level, standard-compliant code 
(not just a crypto proof on paper)

• Interop as client and server 
with 3 other implementations 
of TLS 1.2 and 1.3

• Reasonable performance.
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Most of the RFC,
most of the code. 

Correctness?
Metaprogramming in F*

Performance?
Intermediate copies 
considered harmful.

Security?
Handshake digest
computed on the fly

Example: ClientHello message

Example: HandshakeLog.recv



high-level formatter
val formatCH: 
clientHello -> 
bytes

high-level parser
val parseCH:
bytes ->
option clientHello

inverse properties
val injCH: 
clientHello ->
Lemma …

high-level type
type clientHello =
| ClientHello:
pv: protocolVersion -> 
id: vlbytes1 0 32 -> 
cs: seq ciphersuite {…} -> …

low-level validator
val validateCH:
len: UInt32.t ->
input: lbuffer len ->
Stack (option (erased clientHello * UInt32.t)) 
(requires fun h0 -> live input)
(ensures fun h0 result h1 -> 
h0 = h1 /\ match result with 
| Some (ch, pos) -> 

pos <= len /\
format ch = buffer.read input h0 0..pos-1

| None -> True) 

low-level serializer
val serializeCH:
output: buffer ->
len: UInt32.t -> pv: … -> … -> 
Heap (option UInt32.t) …
(ensures fun h0 result h1 -> 

modifies h0 output.[0..len-1] h1 /\
match result with
| Some pos -> … //idem

erased specification

low-level in-place

code extracted to C
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pre-shared key Diffie-Hellman 
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Our (fresh) crypto model 
precisely reflects F* code modularity, 
involves a security definition for each color, 
supports agility and key compromise.



Everest: verified drop-in replacements 
for the HTTPS ecosystem

• complex, critical, verifiable

• close collaboration: crypto, system, compilers, verification

• new tools: F*, KreMLin, Vale

• safety, functional correctness & crypto security 
for standard-compliant system code

Code, papers, details at

https://project-everest.github.io
https://github.com/project-everest
https://mitls.org
https://fstarlang.org

https://project-everest.github.io/
https://github.com/project-everest
https://mitls.org/
https://fstarlang.org/

