
Authenticated
Encryption
in TLS

Same modelling
& verification approach
concrete security: each lossy step
documented by a game and a reduction
(or an assumption) on paper

Standardized complications
- multiple algorithms and constructions

(crypto agility)

- multiple keys

- conditional security
(crypto strength, compromise)

- wire format, fragmentation, padding

- stateful (stream encryption)

Poor TLS track record
- Many implementation flaws

- Attacks on weak cryptography
(MD5, SHA1, …)

- Attacks on weak constructions
(MAC-Encode-then-Encrypt)

- Attacks on compression

- Persistent side channels

- Persistent truncation attacks

Key 2 Key 3

Key 3Key 1Key 0 (1 sided)

Handshake

AppData

Alert

Plaintext

Handshake

AppData

Alert

Plaintext Key 1

Write channel

Read channel

Key 2

TLS 1.3 gets rid of weak
constructions, encrypts
parts of the handshake,
introduces plenty of
auxiliary keys

AppData
ct = 0x17

Handshake
ct = 0x16

Alert
ct = 0x15

…

plaintext

plaintext 000…ct

ciphertext
App

Data
TLS 1.0

cipherlen

(ℓ + 1)

format parse

ℓ + 1

encrypt decrypt5

tag

Record

LHSE

StAE

AEAD

PRF MAC
Verified

Crypto

library

Generic AEAD

construction

Stream Encryption with

sequence numbers

Length-Hiding (padded)

Multiplexed Streams

Sequence of streams

keyed by Handshake

ChaCha20AES Poly1305GHASH

Handshake/Alert Application

fragments: d0, d1, d2keys:

k0, k1,…

Generic

We model record-layer
security using a game at
every level of the
construction.

We make code-based
security assumptions on
the crypto primitives
(PRF, MAC)

We obtain security
guarantees at the top-
level API for the TLS
record layer

AEAD

Stream

Encryption

TLS record

protection

AES128

AES256

Poly1305

Cipher

IND-PRF

Chacha20 GHASH

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

Record Layer

Protection

Symmetric Cryptography

StatefulLHAE.html
StatefulPlain.html
StatefulPlain.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html

Client Server

decrypt
encrypt TLS record layer

#2
#1

random

sampling

Client Server

decrypt

ideal encryption log

#0

#1

encrypt table

lookup#2
#1

We program & verify AEAD
for TLS 1.2 and TLS 1.3.

We do not consider here
classic, time-battered TLS
modes such as AES_CBC
(Mac-Encode-then-Encrypt)

T

a

g

PRFAEAD Key

IV || 0

Authentication key

PRF

IV || 1

PRF

IV || n

…

……
lengths of

plaintext and

additional data

Ciphertext

(tag)

……

One-time Pad for the MAC

…

Ciphers (IND-PRF)

Assumed for AES and Chacha20

One-Time MACs (INT-CMA1)

For both GF128 or Poly1305,
we get strong probabilistic security.

Ciphers (IND-PRF)

Modelling:
we use a variant with specialized oracles
for each usage of the resulting blocks

- as one-time MAC key materials

- as one-time pad for encryption

- as one-time pad for decryption

One-Time MACs (INT-CMA1)

Construction:
authenticated materials and their
lengths are encoded as coefficients of a
polynomial in a field (GF128 or 2^130 -5)

The MAC is the polynomial evaluated
at a random point, then masked.

We get strong probabilistic security.

Given

• a cipher, modelled as
a pseudo-random function

• a field for computing one-time MACs

• injective message encodings

We program and verify a generic
authenticated stream encryption
with associated data.

We show

• safety

• functional correctness

• security (reduction to PRF assumption)

• concrete security bounds for the
3 main record ciphersuites of TLS

AEAD

Stream

Encryption

TLS record

protection

TLS API

LHAE

AES128

AES256

Poly1305

Cipher

IND-PRF

AES CBC

Chacha20 GHASH

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

arithmetic correctness

(field computations)

functional correctness

(low-level assembly)

abstraction

& agility

security

idealization

injectivity

loops & stateful invariants

(reasoning on ideal logs)

TLS-specific mechanisms

• fragmentation

• content multiplexing

• length-hiding, padding

• re-keying

• 0-RTT, 0.5-RTT

many kinds of proofs

not just code safety!

TLS FFI

StatefulLHAE.html
StatefulPlain.html
StatefulPlain.html
StatefulPlain.html
LHAE.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulPlain.html

AEAD

Stream

Encryption

IND-PRF

IND-1CMA

AEAD.Encoding

AEAD.Invariant

Probabilistic proof

(on paper) in abstract

field + F* verification
Standard

crypto

assumption

F* type-based verification on code

formalizing game-based reduction

Theorem: the 3 main record ciphersuites for TLS
1.2 and 1.3 are secure, except with probabilities

𝑞𝑒 is the number of encrypted records;

𝑞𝑑 is the number of chosen-ciphertext decryptions;

𝑞𝑏 is the total number of blocks for the PRF

StatefulLHAE.html
StatefulPlain.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html

We verified concrete security
on low-level, standard-compliant code
(not just a crypto proof on paper)

• Interop as client and server
with 3 other implementations
of TLS 1.2 and 1.3

• Reasonable performance.
AEAD

Stream

Encryption

TLS record

protection

TLS API

LHAE

AES128

AES256

Poly1305

Cipher

IND-PRF

AES CBC

Chacha20 GHASH

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

TLS FFI

StatefulLHAE.html
StatefulPlain.html
StatefulPlain.html
StatefulPlain.html
LHAE.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
MAC.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulLHAE.html
StatefulPlain.html

TLS 1.3 Handshake
(Outline)

TLS

RSA SHA

ECDH

Crypto Algorithms

AES

Client Server

Negotiation

Signing

Certificates

TLS API

Record Layer

Protection

Application (HTTPS etc)
Network (TCP)

Key

Schedule

Messages Extensions

Session Log

syntax: parse/format

flights digests

Configuration

ODH

Hash

config

& mode shares

keys

HMAC PRF

State

machine

Handshake

Extensions.html
RSA.html
Cert.html
Handshake.html
PRF.html
PRF.html
Handshake.html
Cert.html
Cert.html
Cert.html
Cert.html
Cert.html
Handshake.html

Most of the RFC,
most of the code.

Correctness?
Metaprogramming in F*

Performance?
Intermediate copies
considered harmful.

Security?
Handshake digest
computed on the fly

Example: ClientHello message

Example: HandshakeLog.recv

high-level formatter
val formatCH:
clientHello ->
bytes

high-level parser
val parseCH:
bytes ->
option clientHello

inverse properties
val injCH:
clientHello ->
Lemma …

high-level type
type clientHello =
| ClientHello:
pv: protocolVersion ->
id: vlbytes1 0 32 ->
cs: seq ciphersuite {…} -> …

low-level validator
val validateCH:
len: UInt32.t ->
input: lbuffer len ->
Stack (option (erased clientHello * UInt32.t))
(requires fun h0 -> live input)
(ensures fun h0 result h1 ->
h0 = h1 /\ match result with
| Some (ch, pos) ->

pos <= len /\
format ch = buffer.read input h0 0..pos-1

| None -> True)

low-level serializer
val serializeCH:
output: buffer ->
len: UInt32.t -> pv: … -> … ->
Heap (option UInt32.t) …
(ensures fun h0 result h1 ->

modifies h0 output.[0..len-1] h1 /\
match result with
| Some pos -> … //idem

erased specification

low-level in-place

code extracted to C

key materials

new secret

prior secret

pre-shared key

Extract

Expand

derived secret

Caption:
two kinds of key derivation steps

Diffie-Hellman
shared secret (𝒈𝒙𝒚)

early secret
handshake

secret

master
secret

Encryption

Export
(QUIC)

Integrity

pre-shared keys
for future sessions

Export
(QUIC)

Handshake Integrity

Encryption

EncryptionIntegrity

pre-shared key Diffie-Hellman
shared secret (𝒈𝒙𝒚)

early secret
handshake

secret

master
secret

Encryption

Export
(QUIC)

Integrity

pre-shared keys
for future sessions

Export
(QUIC)

Handshake Integrity

Encryption

EncryptionIntegrity

Our (fresh) crypto model
precisely reflects F* code modularity,
involves a security definition for each color,
supports agility and key compromise.

Everest: verified drop-in replacements
for the HTTPS ecosystem

• complex, critical, verifiable

• close collaboration: crypto, system, compilers, verification

• new tools: F*, KreMLin, Vale

• safety, functional correctness & crypto security
for standard-compliant system code

Code, papers, details at

https://project-everest.github.io
https://github.com/project-everest
https://mitls.org
https://fstarlang.org

https://project-everest.github.io/
https://github.com/project-everest
https://mitls.org/
https://fstarlang.org/

